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Abstract

This paper carries out thermo-electro-mechanical element study of anisotropic and piezoelectric curved surface acoustic
waves (Csaw) in uniform materials, and dispersed Csaw of inlaid electrode metals, particularly for a novel type of
miniature ultrasonic spherical saw motors. An electro-thermo-mechanical acoustic finite element method is chosen with
temperature variation introduced and electric potential condensed, its convergence is verified for mechanical vibration
spectrums and piezoelectric surface wave velocities. The coupled acoustic influences of Euler angles and temperature
gradients in addition to implanted electrode heights and surface curvatures are evaluated on the piezoelectric surface
waves. Numerical results are provided for consistent evaluations, and several conclusions with attained curves are drawn to
investigate the electromechanically controlled standing wave drive mechanism.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction and background

Constitutive and geometric aspects including the temperature features, the anisotropies of piezoelectric
materials and the curvatures of the wave surfaces may tend to concurrently influence the actual working
frequencies and velocities of surface acoustic waves. Diversity of vibrations and waves have been widely
applied in engineering [1-3]. It is significant to select the proper element methods when analyzing high
frequency acoustic wave propagation and relatively low frequency stress wave motion. Recently, new
miniature ultrasonic motors start to win much attention, as reported they include linear motors with flat
propagating surfaces [4] and spherical torque motors with curved surfaces [5]. These ultrasonic motors can be
divided into vibration and surface acoustic wave (saw) types. They possess the particular advantages of low
noise and high drive. A diagrammatic of curved surface acoustic waves (Csaw) for a novel ultrasonic spherical
motor is depicted in Fig. 1 with top and base circular wave propagation surfaces and inlaid metal electrodes.
The electromechanical-controlled wave motion in an opposite direction of 6, pushes forward the ball
connected to the rotator/radius along the wave propagation surface of the piezoelectric spherical stator
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Fig. 1. Schematic part of general anisotropic Csaw: (1) radius, (2) wave propagation surface, (3) piezoelectric spherical crystal substrate,
(4) inlaid metal electrode and (5) fixed curved surface base.

substrate, and then the rotator turns in an ultrasonic motor providing torque with regard to the fixed
axis at o. This novel piezoelectric wave drive mechanism can make a smaller motor than the conventional
electric one. But there is a limit to the wave frequency, otherwise the drive ball will lose contact with
the propelling wave surface in an ultrasonic motor, and the prediction accuracies will of course be in-
sufficient. According to the available knowledge, the frequencies and torques of the ultrasonic motors need to
be better studied within the frequency range of ultrasonic waves, e.g. less than 100 MHz, lower than
most higher frequency saw piezoelectric resonators transmitting signals. In a broader sense, to emphasizing
the frequency ranges and operating stabilities becomes of much academic significance and practical
importance.

The mentioned coupling analysis is governed and derived by variational principles and will require a finite
element method (FEM) with a desirable numerical performance for the Csaw in an ultrasonic device.

This paper is to stress the sound foundations for conducting the different electro-thermo-mechanical (ETM)
finite element analyses of the anisotropic Csaw properties in general piezoelectric mixed solids with
temperature and inlaid electrodes, in order to discuss the driving wave mechanism of the miniaturized
ultrasonic spherical motors with inside and outside surfaces circular. Preliminary and useful results are verified
and obtained, respectively, for free flat surface, curved surface and disturbed Csaw motions, and also for beam
vibration spectrums.

2. Review of the governing equations for thermo-electro-mechanical element method with static-condensation

To describe the variational principle for the ETM dynamics equations, we first express the kinetic energy in
an element level by

9 .9
Tz%ApEUT&Udm (1)

where v is the element volume; for convenience of notation, U is defined as displacement vector. The extended
potential functional with parameters of temperature change and electric potential is further defined
accordingly as
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where ¢ is electric potential, ¢*stands for generalized strain vector in terms of displacements and potential, and
here C simply denotes the constitutive ETM anisotropic material stiffness matrix,

Cé’ PZ 2 3
C= P D =Cy+ CI AT + C, AT* + C3 AT, (3)
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where C,, D, and P, are temperature-related mechanical stiffness coefficients, dielectric permittivities and
piezoelectric constants of an anisotropic material, respectively. AT = 0 means that all the parameters are at
room temperature for the electromechanical element method [6].

Without considering much damping in quartz crystals, the electromechanical dynamics equations can be
derived by the following modified stationary Hamilton functional which needs boundary conditions, instead
of initial conditions, ¢ fI’f(T — I1,)d¢ = 0, where t = time, T and I, are the previously described and expanded
kinetic energy and potential energy, respectively.

By variation of this extended Hamilton functional we have the standard generalized governing dynamic
equations for electromechanical analysis

MU” + K, U + K,4® = F, 4)

Ky U+ Kpp® = Q, (5

where M, K,,,, K, and K, are the mass, mechanical stiffness, piezoelectric coupling and dielectric matrices,
while U, @, F and Q are the mechanical displacement, electric potential, mechanical force and electric charge
vectors, respectively.

For most cases the piezoelectric dynamics equations for vibrations and acoustic waves in arbitrarily shaped
hard solids are electro-mechanically coupled, and unfortunately, it usually needs numerical methods like finite
and boundary elements to generate a set of governing linear and eigen equations. It is selection and
formulation of appropriate solution techniques that matters to carefully balance numerical accuracies and
efficiencies, for high frequency acoustic wave propagations and low frequency dynamic stress wave motions,
respectively.

If an element method is chosen, an electromechanical structure is first divided into NE elements. For each
element we then assume the element field interpolation with vectors of mechanical displacements U and
electric potential @,

U JE q
={u v w T=N"Nfu v w T—N* , 6
{(I)} { b} ,§=1 i{ b} {(p} (6)
where N; (i =1,2,...,NE) represent the shape functions of an element with NE nodes, and here again N

implies the element shape function matrix for mechanical displacements only. Specifically, the curved surface
waves demand higher order elements, in comparison with flat surface shear ones.
For a generalized plane strain element, the total element strains come from the following differentiation:

8* = {SX &y yyz Vzx yxy d)?x ¢’y }T = D{ U o }T
= diag(D,N*, DyN*){q ¢}" =B{q ¢}, (7

where D, and Dy are the differential operators for mechanical and dielectric parts in D, and N* stands for the
expanded element shape function matrix for electro-mechanical strains. B = (B,, By) represents the whole
geometric matrix of an element.

When considering the temperature, the element stiffness for ETM analysis is generated in a compact form

Kuu Ku(j) T
K= = [ B'CBdy, 8
Koy Koy /L ®

where the corresponding material matrix, C, is defined in Eq. (3).

The ETM coupling effect in C and B in Egs. (3) and (8), governed by the constitutive generalized plane
strain constraint for a piezoelectric crystal, require many more efforts to cope with the material constants and
numerical operations. Using the constraint, the required computing capacities are reduced to some extent.

It should be pointed out that different gradient orders of temperature coefficients in Egs. (3) and (8) will
lead to results of difference.
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The total element mass matrix for an acoustic element is defined and given by

M = diag(M,,, 0) = ( / pNTNdw, 0), )
v
where M, is the mechanical mass, p is its density of a material; specifically for an electrode of Al metal,
p = 2699 kg/cm?, and for quartz crystal, p = 2649 kg/cm?. Again, here N denotes the element shape function
matrix for consistent mechanical masses.
From Egs. (1)~(9) we definitely know that the generalized element matrix equations for thermo-electro-
acoustic analysis of resonant vibrations and waves are

[K]{;')} =w2[M1{f;}, (10)

where w represents the circular frequency, the stiffness matrix is the expanded one with dielectric part and
demands higher order element methods for surface waves, the code can consume a great deal of computer
storage and bandwidths in piezoelectric solution that the full-scale piezoelectric saw analysis is still difficult or
inaccurate. The element static-condensation of Eq. (10) will avoid numerical scaling in special eigen solutions
and can greatly increase computational efficiency. However the rank-deficiency in dielectric matrix has to be
resolved.

Without going into details of justifying the computing efficiency and accuracy of the element with
perturbation [7] for electromechanical analysis, it is also a normal step here to try and suggest a numerical
perturbation to the diagonal terms of the singular dielectric element matrix K, in this ETM analysis of curved
surface (disturbed) wave motions, to remove the singularity and fulfill the static-condensation

(K* — /Mu,)q = 0, (11)
where K* is the condensed element stiffness matrix here for eigenvalues 4, and is given in the form [2]
* —1
K" = Kuu — Kug K s Kopu (12)
with the following manipulation to execute the inversion after perturbation, i.e., to take
Kgp = Kpg + AKgpy. (13)

It was calculated that this piezoelectric FEM with element static-condensation could make the computing
operations plausible by decreasing the storage bandwidths for numerical codes and analyses of multi-periodic
piezoelectric saws.

For piezoelectric saws, consider AKy44 = I, where f is a shift that is problem-dependent with respect to
material and wave types, and I is a unity matrix. Fortunately, f§ value for Csaw is not large but its range could
be wide, the acceptable range value is numerically detected between f = 107'°—107!8 for the piezoelectric
st-quartz.

3. Verification and application

In the limit as the radius tends to infinite, the curved surface becomes flat with exact solutions. For the time
being, it is assumed that the ceramic wear layers on the inlaid metal electrodes are zero in thickness, i.e., the
concerned Csaw problem will be confined to the anisotropic piezoelectric spherical substrate solids with a
number of isotropic inlaid metal electrodes.

Take two free vibrating beams, the straight one is of 40 um x 2 um with free boundary conditions in
piezoelectric strip resonators, the curved one is shown with radius of r = 125 and parallel ends. Two 9-node
meshes of 90 x 5 and 160 x 8 generalized plane strain elements are used to compute the mechanical vibrating
spectrums of the curved beam. The selected mechanical element convergence (rate) is verified for regularly and
irregularly meshed beam vibrations as shown in Fig. 2.

For half-wavelength (HW) analysis of Csaw propagation in #-direction, the element boundary conditions
have to be correctly enforced in terms of generalized displacements including potential and tractions for an
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Fig. 2. Converged vibration frequency spectrums of straight and curved st-quartz beams in a strip resonator at room temperature:
1/2-curved beam; and 3 straight beam.
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Fig. 3. Curvature effects on st-quartz curved surface acoustic wave velocities.

ultrasonic spherical motor

u(x = x1) = = (x = x + HW), g, uyp,us, h, (14)

P{\»(X = xl) = _p;(x =X+ HW): pxapyapza d)xa (py' (15)

Then we verify a flat saw motion close to the surface of the st-quartz solid by choosing the perturbed
electromechanical generalized plane finite elements according to the Serendipity and Lagrange types. For a
mesh of 8 x 250 = 2000, use HW of 5 and the height # = 100, the piezoelectric element PQ8 gives the result of
3148.32 close to the mechanical experimental data for saw speed in st-quartz, while PQ9 yields satisfactory
solution of 3161.1. A bilinear four-node element should bridge the two in principle, but approximately shares
the common properties.

Analyze a half-period st-quartz stator in a spherical ultrasonic motor structure depicted in Fig. 1 by using
PQY. The inner radius varies from 1000 pm (curved surface) to infinitely large (flat surface), the stator
thickness /# = 200 um, the curved wave length = 10 um. The mesh consists of 8 x 250 = 2000 nine-node
acoustic Lagrange elements. To show how the curved surfaces disturb the Rayleigh saw frequencies and
velocities, the mechanical and piezoelectric Csaw velocities vs radii are given and curved in Fig. 3.

It is indicated in Fig. 3 that, with the radius tending to infinite, the piezoelectric Csaw velocity increases
without jumps and converges to the exact value of 3158 m/s, and the mechanical Csaw velocity to the
laboratory solution of 3149m/s. As the bending degree increases, the wave velocity will decrease. This
quantitative phenomenon turns out to be instrumental to an ultrasonic spherical motor analysis needing a
clear constitutive definition and mathematical explanations.

When the temperature changes, inlaid electrode geometries and orientation angles concurrently act on the
piezoelectric Csaw motions, the wave or motion speeds could vary in an expected pattern as shown in Table 1
due to the coupling influences or lack of numerical accuracies.

For the time being, we can at least draw the following conclusions after studying the obtained results in
Table 1: (1) Temperature increase usually decreases the Csaw speeds in both uniform and embedded materials;
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Table 1
Mixed effects on piezoelectric Csaw and Dsaw speeds

Temp. change (°C) Inlaid electrode thickness Cut angles (Thermal) piezoelectric Csaw/Dsaw speeds
0 0.0 40 3163.54
0 0.0 30 3157.78
0 0.0 33(st) 3158.62
0 1.0 33 3202.31
50 1.0 33 3198.10
100 1.0 33 3189.40
0 0.0 30 3157.78
0 0.2 30 3121.53
0 0.4 30 3191.23
0 0.6 30 3188.96

Inlaid electrode width/wave length = 1/8, substrate height = 300.

(2) the thin inlaid metals will make wave speed oscillations in quartz substructures, and (3) the TEM relations
for the above two cases turn out to be very complex requiring numerical methods to solve.

4. Discussion and forecast

The ETM coupling element analysis method is successfully designed for a Csaw motor, and assured to be
consistent and convergent with the help of exact solutions for free vibrations and flat surface waves. The found
relationships together with curves have been partially validated through three techniques, and should be
instrumental to the newly arising miniaturized spherical ultrasonic motors for smaller sizes and greater torques
with lower noise. If the thickness of the stator substrate is too small, the Bragg condition after Bragg’s, may be
introduced [8] for leaky wave reflection research, in order to avoid unacceptable interference from the bottom
of the piezoelectric stator, except for the inlaid Al electrodes.

To bring the discussion to a close, it is believed that with the obtained knowledge and described methods in
this analysis, more potential element simulations of the curved and disturbed saws in ordinary uniform and
implanted materials, particularly for an electromechanical saw ultrasonic device together with good operating
stabilities, should be finished and validated by the similar analysis process for new piezoelectric anisotropic
materials besides quartz crystals.
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